12 research outputs found

    Kerr-Nonlinear Microresonators and Frequency Combs: Modelling, Design, and Applications

    Get PDF

    Bandwidth and conversion efficiency analysis of dissipative Kerr soliton frequency combs based on bifurcation theory

    Get PDF
    Dissipative Kerr soliton frequency combs generated in high-Q microresonators may unlock novel perspectives in a variety of applications and crucially rely on quantitative models for systematic device design. Here, we present a global bifurcation study of the Lugiato-Lefever equation which describes Kerr comb formation. Our study allows systematic investigation of stationary comb states over a wide range of technically relevant parameters. Quantifying key performance parameters of bright and dark-soliton combs, our findings may serve as a design guideline for Kerr comb generators

    Comb-based WDM transmission at 10 Tbit/s using a DC-driven quantum-dash mode-locked laser diode

    Full text link
    Chip-scale frequency comb generators have the potential to become key building blocks of compact wavelength-division multiplexing (WDM) transceivers in future metropolitan or campus-area networks. Among the various comb generator concepts, quantum-dash (QD) mode-locked laser diodes (MLLD) stand out as a particularly promising option, combining small footprint with simple operation by a DC current and offering flat broadband comb spectra. However, the data transmission performance achieved with QD-MLLD was so far limited by strong phase noise of the individual comb tones, restricting experiments to rather simple modulation formats such as quadrature phase shift keying (QPSK) or requiring hard-ware-based compensation schemes. Here we demonstrate that these limitations can be over-come by digital symbol-wise phase tracking algorithms, avoiding any hardware-based phase-noise compensation. We demonstrate 16QAM dual-polarization WDM transmission on 38 channels at an aggregate net data rate of 10.68 Tbit/s over 75 km of standard single-mode fiber. To the best of our knowledge, this corresponds to the highest data rate achieved through a DC-driven chip-scale comb generator without any hardware-based phase-noise reduction schemes

    Ultrafast optical ranging using microresonator soliton frequency combs

    Get PDF
    Light detection and ranging (LIDAR) is critical to many fields in science and industry. Over the last decade, optical frequency combs were shown to offer unique advantages in optical ranging, in particular when it comes to fast distance acquisition with high accuracy. However, current comb-based concepts are not suited for emerging high-volume applications such as drone navigation or autonomous driving. These applications critically rely on LIDAR systems that are not only accurate and fast, but also compact, robust, and amenable to cost-efficient mass-production. Here we show that integrated dissipative Kerr-soliton (DKS) comb sources provide a route to chip-scale LIDAR systems that combine sub-wavelength accuracy and unprecedented acquisition speed with the opportunity to exploit advanced photonic integration concepts for wafer-scale mass production. In our experiments, we use a pair of free-running DKS combs, each providing more than 100 carriers for massively parallel synthetic-wavelength interferometry. We demonstrate dual-comb distance measurements with record-low Allan deviations down to 12 nm at averaging times of 14 ÎĽ\mus as well as ultrafast ranging at unprecedented measurement rates of up to 100 MHz. We prove the viability of our technique by sampling the naturally scattering surface of air-gun projectiles flying at 150 m/s (Mach 0.47). Combining integrated dual-comb LIDAR engines with chip-scale nanophotonic phased arrays, the approach could allow widespread use of compact ultrafast ranging systems in emerging mass applications.Comment: 9 pages, 3 figures, Supplementary information is attached in 'Ancillary files

    Ultra-fast optical ranging using quantum-dash mode-locked laser diodes

    Get PDF
    Laser-based light detection and ranging (LiDAR) is key to many applications in science and industry. For many use cases, compactness and power efficiency are key, especially in high-volume applications such as industrial sensing, navigation of autonomous objects, or digitization of 3D scenes using hand-held devices. In this context, comb-based ranging systems are of particular interest, combining high accuracy with high measurement speed. However, the technical complexity of miniaturized comb sources is still prohibitive for many applications, in particular when high optical output powers and high efficiency are required. Here we show that quantum-dash mode-locked laser diodes (QD-MLLD) offer a particularly attractive route towards high-performance chip-scale ranging systems. QD-MLLDs are compact, can be easily operated by a simple DC drive current, and provide spectrally flat frequency combs with bandwidths in excess of 2 THz, thus lending themselves to coherent dual-comb ranging. In our experiments, we show measurement rates of up to 500 MHz—the highest rate demonstrated with any ranging system so far. We attain reliable measurement results with optical return powers of only – 40 dBm, corresponding to a total loss of 49 dB in the ranging path, which corresponds to the highest loss tolerance demonstrated so far for dual-comb ranging with chip-scale comb sources. Combing QD-MLLDs with advanced silicon photonic receivers offers an attractive route towards robust and technically simple chip-scale LiDAR systems

    Microresonator solitons for massively parallel coherent optical communications

    Full text link
    Optical solitons are waveforms that preserve their shape while propagating, relying on a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s, promising to overcome the limitations imposed by dispersion of optical fibers. These approaches, however, were eventually abandoned in favor of wavelength-division multiplexing (WDM) schemes that are easier to implement and offer improved scalability to higher data rates. Here, we show that solitons may experience a comeback in optical communications, this time not as a competitor, but as a key element of massively parallel WDM. Instead of encoding data on the soliton itself, we exploit continuously circulating dissipative Kerr solitons (DKS) in a microresonator. DKS are generated in an integrated silicon nitride microresonator by four-photon interactions mediated by Kerr nonlinearity, leading to low-noise, spectrally smooth and broadband optical frequency combs. In our experiments, we use two interleaved soliton Kerr combs to transmit a data stream of more than 50Tbit/s on a total of 179 individual optical carriers that span the entire telecommunication C and L bands. Equally important, we demonstrate coherent detection of a WDM data stream by using a pair of microresonator Kerr soliton combs - one as a multi-wavelength light source at the transmitter, and another one as a corresponding local oscillator (LO) at the receiver. This approach exploits the scalability advantages of microresonator soliton comb sources for massively parallel optical communications both at the transmitter and receiver side. Taken together, the results prove the significant potential of these sources to replace arrays of continuous-wave lasers in high-speed communications.Comment: 10 pages, 3 figure

    Coherent WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator

    Full text link
    Quantum-dash (QD) mode-locked laser diodes (MLLD) lend themselves as chip-scale frequency comb generators for highly scalable wavelength-division multiplexing (WDM) links in future data-center, campus-area, or metropolitan networks. Driven by a simple DC current, the devices generate flat broadband frequency combs, containing tens of equidistant optical tones with line spacings of tens of GHz. Here we show that QD-MLLDs can not only be used as multi-wavelength light sources at a WDM transmitter, but also as multi-wavelength local oscillators (LO) for parallel coherent reception. In our experiments, we demonstrate transmission of an aggregate data rate of 4.1 Tbit/s (23x45 GBd PDM-QPSK) over 75 km standard single-mode fiber (SSMF). To the best of our knowledge, this represents the first demonstration of a coherent WDM link that relies on QD-MLLD both at the transmitter and the receiver

    A naturally arising broad and potent CD4-binding site antibody with low somatic mutation

    No full text
    The induction of broadly neutralizing antibodies (bNAbs) is a potential strategy for a vaccine against HIV-1. However, most bNAbs exhibit features such as unusually high somatic hypermutation, including insertions and deletions, which make their induction challenging. VRC01-class bNAbs not only exhibit extraordinary breadth and potency but also rank among the most highly somatically mutated bNAbs. Here, we describe a VRC01-class antibody isolated from a viremic controller, BG24, that is much less mutated than most relatives of its class while achieving comparable breadth and potency. A 3.8-angstrom x-ray crystal structure of a BG24-BG505 Env trimer complex revealed conserved contacts at the gp120 interface characteristic of the VRC01-class Abs, despite lacking common CDR3 sequence motifs. The existence of moderately mutated CD4-binding site (CD4bs) bNAbs such as BG24 provides a simpler blueprint for CD4bs antibody induction by a vaccine, raising the prospect that such an induction might be feasible with a germline-targeting approach
    corecore